Conversion of Common Test Statistics to » and d Values
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Note. dfy, = degrees of freeedom for the numerator, dfq = degrees of freedom for the denominator. Tables taken
after Friedman (1982) and Wolf (1986).
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Common Critical Values from the Normal Distribution
for Quick Approximate Power Analysis

a =0.05 a=10.01
1-tailed 2-tailed 1-tailed 2-tailed
Power Distance (1.645) (1.960) (2.326) (2.576)
0.70 -0.525 2.170 2.485 2.846 3.101
0.80 -0.842 2.487 2.802 3.168 3.418
090 -1.282 2.927 3.242 3.608 3.858

For a 2-group design, approximate per group sample size (#;) for a given a and level of

Statistical Power (1-f) for the can be solved as:
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n,> % , where z’, is the critical value from the Table above, d is a standardized mean
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metrics have been proposed. In general, the use of Cohen’s d the adjusted d, or Hedges’ g will
lead to approximately the same result.

difference, d = , and s is an assumed standard deviation. As pointed out above, various

For example, suppose a study reports the control group had a mean of Y. =10, the treatment
group had a mean of ¥, =12 and the pooled standard deviation was s = 1.5.
Then the standardized mean difference would be: d = (12.7-11.8)/1.5 =0.6.

For a future study to have 70% Power (1-p = 0.70) for a 2-tailed test at o = 0.05
The approximate necessary per group sample size would be:
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For a future study to have 80% Power (1- = 0.80) for a 2-tailed test at oo = 0.01

>34.3 =35.

The approximate necessary per group sample size would be:
2
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Reversing this process, if a researcher knew that he could only obtain 100 total subjects
(n; = 50 per group), then we could solve for an approximate minimum effect size (d):

>64.9 ~65.
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Thus, if the research desired 80% Power (1- = 0.80) for a 2-tailed test at o = 0.05
d > 2'21_(:)2 > 2'22_02 >(.5604 would be the approximate necessary effect size.
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To double check this enter the effect size of d = 0.5604 the critical value for 80% Power
(1-B = 0.80) for a 2-tailed test at a. = 0.05 into
2 2
n. > 2z, > 2(2.8027) > 15.702408 >
I d? 0.5604>  0.31404816




