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Note. dfn = degrees of freeedom for the numerator, dfd = degrees of freedom for the denominator.  Tables taken 
after Friedman (1982) and Wolf (1986). 
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Common Critical Values from the Normal Distribution 
for Quick Approximate Power Analysis 

 
            D = 0.05         D = 0.01 
      1-tailed  2-tailed  1-tailed  2-tailed 
Power Distance  (1.645)   (1.960)   (2.326)   (2.576)   
  0.70 -0.525    2.170    2.485    2.846   3.101 
  0.80 -0.842    2.487    2.802    3.168   3.418 
  0.90 -1.282    2.927    3.242    3.608   3.858   
 
For a 2-group design, approximate per group sample size (nj) for a given D and level of 
Statistical Power (1-E) for the can be solved as: 
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 , and s is an assumed standard deviation. As pointed out above, various 

metrics have been proposed. In general, the use of Cohen’s d the adjusted d, or Hedges’ g will 
lead to approximately the same result. 
 
For example, suppose a study reports the control group had a mean of CY =10, the treatment 
group had a mean of TY =12 and the pooled standard deviation was s = 1.5. 
Then the standardized mean difference would be: d = (12.7-11.8)/1.5 = 0.6. 
For a future study to have 70% Power (1-E = 0.70) for a 2-tailed test at D = 0.05 
The approximate necessary per group sample size would be: 
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For a future study to have 80% Power (1-E = 0.80) for a 2-tailed test at D = 0.01 
 
The approximate necessary per group sample size would be: 
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Reversing this process, if a researcher knew that he could only obtain 100 total subjects  
(nj = 50 per group), then we could solve for an approximate minimum effect size (d): 
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Thus, if the research desired 80% Power (1-E = 0.80) for a 2-tailed test at D = 0.05 
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t t 0.5604 would be the approximate necessary effect size.  

 

To double check this enter the effect size of d = 0.5604 the critical value for 80% Power  
(1-E = 0.80) for a 2-tailed test at D = 0.05 into  
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