Statistic		<i>r</i> -value	<i>d</i> -value	
1.	t	$\sqrt{\frac{t^2}{(t^2+df)}}$	$\frac{2t}{\sqrt{df}}$	
2.	Ζ	$\sqrt{\frac{z^2}{z^2 + N}}$	$\frac{2z}{\sqrt{N}}$	
3.	$F df_n = 1$	$\sqrt{\frac{F}{F + df_{\rm d}}}$	$2\sqrt{\frac{F}{df_{d}}}$	
4.	$F df_n > 1$	$\sqrt{\frac{df_{\rm n} F}{df_{\rm n} F + df_{\rm d}}}$	$2\sqrt{\frac{df_{\rm n}F}{df_{\rm d}}}$	
5.	$\chi^2 df = 1$	$\sqrt{\frac{\chi^2}{N}}$	$2\sqrt{\frac{\chi^2}{N-\chi^2}}$	
6.	$\chi^2 df > 1$	$\sqrt{\frac{\chi^2}{\chi^2 + N}}$	$2\sqrt{\frac{\chi^2}{N}}$	
7.	r	r	$\sqrt{\frac{4r^2}{1-r^2}}$	
8.	d	$\sqrt{\frac{d^2}{4+d^2}}$	d	

Conversion of Common Test Statistics to r and d Values

Note. df_n = degrees of freedom for the numerator, df_d = degrees of freedom for the denominator. Tables taken after Friedman (1982) and Wolf (1986).

Cohen suggested computing:

$$d = \frac{(Y_1 - Y_2)}{\sqrt{(s_1^2 + s_2^2)/2}} \,.$$

Hedges and Olkin (1985) suggested an adjusted *d*, $\tilde{d} = \frac{(\bar{Y}_1 - \bar{Y}_2)}{\sqrt{(s_1^2 + s_2^2)/2}} \left[1 - \left[\frac{3}{4(n_1 + n_2) - 9} \right] \right]$ and Hedges' $g = \frac{(\bar{Y}_1 - \bar{Y}_2)}{\sqrt{((n_1 - 1)s_1^2 + (n_2 - 1)s_2^2)/((n_1 + n_2 - 2)))}} \left[1 - \left[\frac{3}{4(n_1 + n_2) - 9} \right] \right]$

Common Critical Values from the Normal Distribution for Quick Approximate Power Analysis

	$\alpha = 0.05$		$\alpha = 0.01$	
	1-tailed	2-tailed	1-tailed	2-tailed
Power Distance	(1.645)	(1.960)	(2.326)	(2.576)
0.70 -0.525	2.170	2.485	2.846	3.101
0.80 -0.842	2.487	2.802	3.168	3.418
0.90 -1.282	2.927	3.242	3.608	3.858

For a 2-group design, approximate per group sample size (n_j) for a given α and level of Statistical Power $(1-\beta)$ for the can be solved as:

 $n_j \ge \frac{2z_{cv}^2}{d^2}$, where z_{cv}^2 is the critical value from the Table above, *d* is a standardized mean difference, $d = \frac{(\overline{Y_1} - \overline{Y_2})}{s}$, and *s* is an assumed standard deviation. As pointed out above, various metrics have been proposed. In general, the use of Cohen's *d* the adjusted *d*, or Hedges' *g* will lead to approximately the same result.

For example, suppose a study reports the control group had a mean of $\overline{Y}_C = 10$, the treatment group had a mean of $\overline{Y}_T = 12$ and the pooled standard deviation was s = 1.5. Then the standardized mean difference would be: d = (12.7-11.8)/1.5 = 0.6. For a future study to have **70% Power (1-\beta = 0.70)** for a 2-tailed test at $\alpha = 0.05$ The approximate necessary per group sample size would be:

$$n_j \ge \frac{2(2.485^2)}{0.6^2} \ge \frac{2(6.175225)}{0.36} \ge 34.3 \approx 35.$$

For a future study to have 80% Power $(1-\beta = 0.80)$ for a 2-tailed test at $\alpha = 0.01$

The approximate necessary per group sample size would be:

$$n_j \ge \frac{2(3.418^2)}{0.6^2} \ge \frac{2(11.682724)}{0.36} \ge 64.9 \approx 65.$$

Reversing this process, if a researcher knew that he could only obtain 100 total subjects ($n_i = 50$ per group), then we could solve for an approximate minimum effect size (d):

$$d \geq \frac{z_{cv}}{\sqrt{\frac{n_j}{2}}}$$

Thus, if the research desired 80% Power (1- $\beta = 0.80$) for a 2-tailed test at $\alpha = 0.05$ $d \ge \frac{2.802}{\sqrt{\frac{50}{2}}} \ge \frac{2.802}{5} \ge 0.5604$ would be the approximate necessary effect size.

To double check this enter the effect size of d = 0.5604 the critical value for 80% Power (1- $\beta = 0.80$) for a 2-tailed test at $\alpha = 0.05$ into

$$n_j \ge \frac{2z_{cv}^2}{d^2} \ge \frac{2(2.802^2)}{0.5604^2} \ge \frac{15.702408}{0.31404816} \ge 50$$