

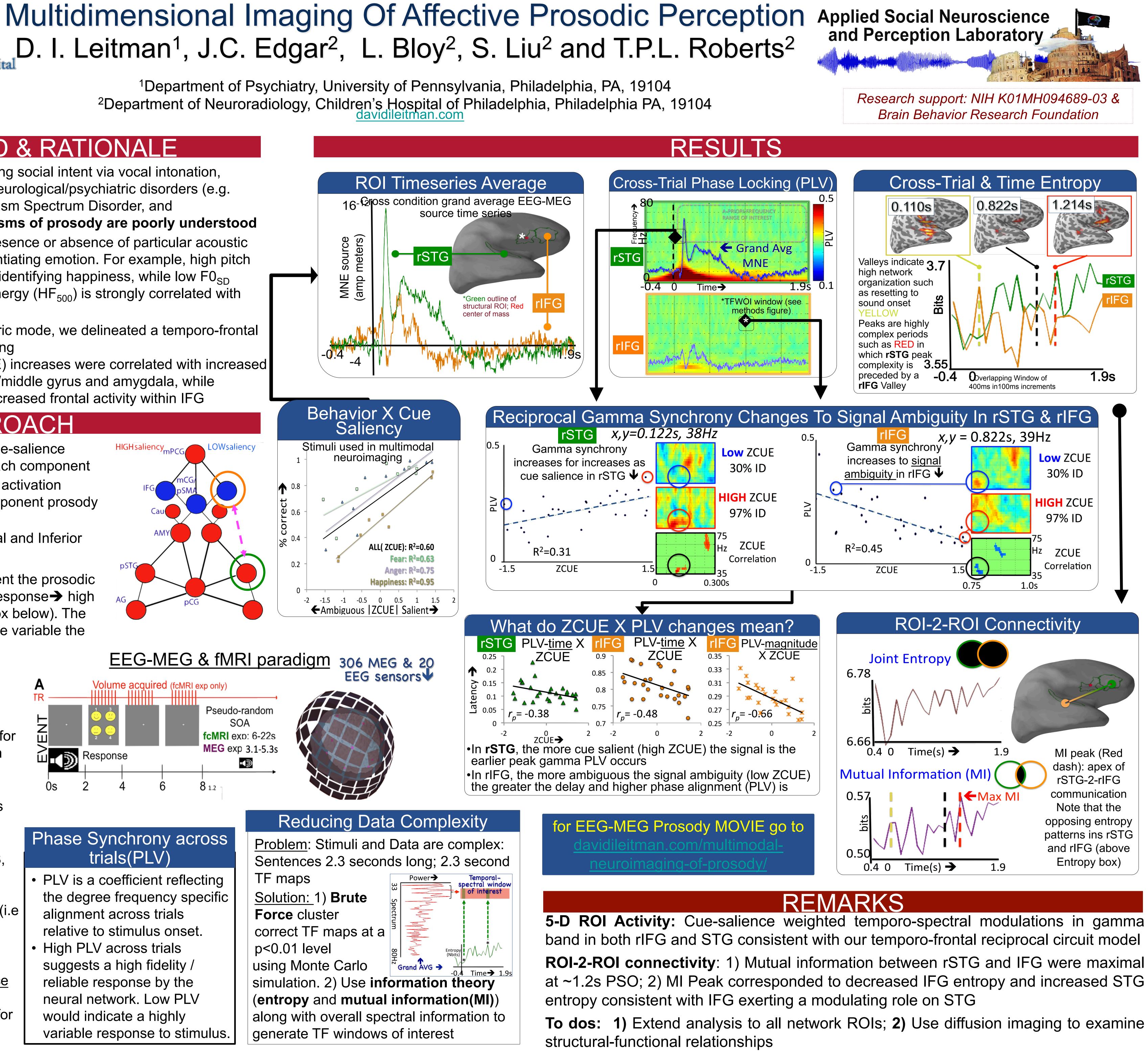
BACKGROUND & RA

- **Dysprosodia** impairment in perceiving social intent via vocal intonation, features prominently in a number of neurological/psychiatric disorders (e.g. Depression, Parkinson's Disease, Autism Spectrum Disorder, and Schizophrenia). The neural mechanisms of prosody are poorly understood
- **Cue saliency** refers to the relative presence or absence of particular acoustic features that serve as cues for differentiating emotion. For example, high pitch variability (F0_{SD}) is a powerful cue for identifying happiness, while low F0_{SD} signals fear. Similarly, high spectral energy (HF_{500}) is strongly correlated with anger perception
- Previously, using fMRI and a parametric mode, we delineated a temporo-frontal reciprocal circuit for prosodic processing
- We observed that cue saliency (ZCUE) increases were correlated with increased BOLD activation in superior temporal /middle gyrus and amygdala, while decreases in ZCUE correlated with increased frontal activity within IFG

APPROACH

- 1. Tempro-spectral ROI analysis: A cue-salience weighted temporo-spectral map at each component
- 2. ROI-2-ROI Connectivity: Reciprocal activation pattern and connectivity within 9-component prosody network
- → Here we show right Superior Temporal and Inferior Frontal Gyrus (**rSTG rIFG**)

Hypothesis: The more emotionally salient the prosodic signal is the more consistent the brain response \rightarrow high cross trial phase synchrony (PLV see box below). The more ambiguous the stimulus is the more variable the response across trials \rightarrow low PLV


Target- Gamma band oscillations (30-80Hz)

Rationale: 1) Computational models suggest that gamma frequency reflects excitatory-inhibitory balances that allow for local cortical pyramidal columns to act in unison. 2) Prior studies link fMRI-BOLD activation to Gamma synchrony

Subjects: 18 healthy controls (13 males 24.86±7.31 years of age; Education: 14.86±1.81 years)

Task: EEG&MEG:15 repetitions of 26 (8, happy and fear 10 anger) stimuli = 390 stimuli, divided into five 5-minute blocks Stimuli: sentence 0.8 to 2 seconds long (i.e. "its eleven o'clock")(see figure above)

Analysis Pipeline: Data: 2.3 second epochs reflecting individual trials (Max N=390) and decimated to 500HZ. Source modeling: **MNE L2 min-norm** sources weighted by fMRI (see handout or web for further methods)

ENT

band in both rIFG and STG consistent with our temporo-frontal reciprocal circuit model **ROI-2-ROI connectivity:** 1) Mutual information between rSTG and IFG were maximal at ~1.2s PSO; 2) MI Peak corresponded to decreased IFG entropy and increased STG **To dos:** 1) Extend analysis to all network ROIs; 2) Use diffusion imaging to examine